DOCUMENT RESUME

ED 318 764 TM 014 817

AUTHOR van Merrienboer, Jecsoen J. G.

TITLE What Cognitive Science May Learn from Instructional
Design: A Case Study in Introductory Computer
Programming.

PUB DATE Apr 90

NOTE 12p.; Paper presented at the Annual Meeting of the

American Educational Research Association (Boston,
MA, April 16-20, 1990).

PUB TYPE Viewpoints (120) -- Speeches/cdﬁference Papers (150)
EDRS PRICE MF01/PCOl1 Plus Postage.
DESCRIPTORS Case Studies; *Cognitive Measurement; Educational

Strategies; *Instructional Design; Introductory
Courses; *Programing; =*Research Methodology; Theory
Practice Relationship

IDENTIFIERS *Cognitive Sciences

ABSTRACT

The contributions of instructional design to
cognitive science are discussed. It is argued that both sciences have
their own object of study, but share a common interest in human
cognition and performance as part of instructional systems. From a
case study based on experience in teaching introductory computer
programming, it is concluded that both sciences may reciprocally
influence each other. Cognitive science often conducts research on
cognitive processes in "silent" instructional strategies, so that
glLidelines for improving instructional systems are limited to those
strategies. Instructional design conducts research on "spoken"
instructional strategies, and observations of students working
according to those strategies may provide evidence for the importance
of particular cognitive processes that are neglected in current
cognitive theories. Howaver, these implications are also limited
because they cannot lead to detailed descriptions of those cognitive
processes. With regard to the tangent plane between cognitive science
and instructional design (such as the field of intelligent tutoring
systems), it is argued that these sciences must work together to
reach their common goals. The ACT theory of skill acguisition is
included in the discussion. (Author/SLD)

IS SRR R E RS E R R SRR R RS R R R R R R R R R R I R R R Y R R K]

* Reproductions supplied by EDRS are the best that can be madu *

* from the original document. *
e R R R R R IL




Paper Presented at the 1990 AERA Annual Meeting, Apri) 16-20, Bostun USA

What Cognitive Science may Learn from Instructional Design:
A Case Study in Introductory Computer Programming

"PERMISSION TO REPRODUCE THIS
U.S. DEPARTMENT OF EDUCATION
Otfice of Egucalmnal Research and Improvement ~ .o MATERIAL HAS BEEN GRANTED BY
EDUCATIONAL RESOURCES INFORMATION Jercen J. G. van Merriénboer M "
CENTER (FRIC Jepoen J. 6. vaw Merernaocn
hs documenl has heen reproduced as

received from the person or organizahion

onginahng 1t ) ]
0 Minor changes have been made 0 improve UmVCI‘Slty of TWCnte

reproduction quality

Paints of view or opinions stated inthis docu: Dept. of Education, Div. of Instructional Technology TO THE EDUCATIONAL RESOURCES

ment do not necessarnly represent official
OERI posttion or policy

-
e
Do
D
o
ey
=~
=

INFORMATIOMN, CENTER (ERIC)."”

P.O. Box 217, 7500 AE Enschede, The Netherlands

Abstract

This paper concerns the contributions of instructional design to cognitive science. It is
argued that both sciences have their own objec* of study, but a common interest in human
cognition and performance as part of instructional systems. From a case study in
introductory computer programming, it is concluded that both sciences may reciprocally
influence each other, although their mutual contributions have limitations. Cognitive
science often conducts research on cognitive processes in "silent" instructional strategies,
So that the guidelines to improve instructional systems are limited to those strategies.
Instructional design conducts research on "spoken" instructional Strategies, and
observations of students working according to those strategies may provide evidence for
the importance of particular cognitive processes which are neglected in current cognitive
theories. However, these implications are also limited because they cannot lead to
detailed descriptions of those cognitive processes. With regard to the tangent plane
between cognitive science and instructional design, such as, for example, the field of
Intelligent Tutoring Systems, it is finally argued that both sciences must contribute to each
other to reach their common goals.

1. Intreduction

This point-of-view paper primarily pertains to the question what cognitive science may
learn from instructional design. Whereas most researchers agree that research in cognitive
science contributes to instructional design, the opposite question is rarely asked and,
moreover, when it is asked it is not unequivocally answered. An obhvious ground for this




lack of agreement is the fact that no clear evidence for contributions froia instructional
design to cognitive science exists. However, the absence of evidence does not necessarily
indicate the impossibility of such contributions. For instance, it may also point to a
deficiency of high-quality research in the field of instructional design (which is perhaps
too practical with insufficient attention for research) or to an inadequate schooling of
instructional designers who have incomplete knowledge of cognitive science (and may
thus use erroneous cognitive theories). 'Whereas such observations may certainly be to-the-
point, they do not answer the question if contributions from instructional design to
cognitive science are fundamentally possible, and if so, what the nature of those
contributions should be and under which conditions they will occur. In the present paper,
some preliminary answers to those questions will be provided.

As a first step, the objects of study of the two sciences and the points of contact
between them should be identified. The underlying idea is that potential contributions
from instructional design to cognitive science, and vice versa, will prominently manifest
themselves at the tangent plane between the two sciences. The objccts of study clearly
differ (see also, Warries, 1987). The object of study of cognitive science may loosely be
described as cognitive processes (e.g., learning) and related performance of humans. The
collected information is organized in cognitive theories. The object of study of
instructional design may be described as instructional processes' (e.g., the execution of
instructional plans, such as particular instructional strategies and tactics, by a teacher
and/or other delivery systems) and ielated performance of instructional systems. Here, the
collecced information is organized in instructional theories.

Whereas both sciences have their unique object of study, they nevertheless clearly
touch each other because all instructional systems contain one or more learners. The
object of study at this "tangent plane" is human cognition and performance as component
of an instructional system. Here, instructional processes and cognitive learning processes
are heavily interwoven. For this reason, the one-worded term "onderwijsleerprocessen"
[instruction-learning processes] is often used in The Netherlands to depict the object of
study of this overlapping area. In my opinion, the study of instruction-learning processes
may equally justifiable be called applied cognitive science or fundamental research in
instructional design (in fact, it is closely related to the RDD-approach in instructional
design). But more importantly, both sciences meet at this tangent plane and if
contributions of instructional design to cognitive science exist, and vice versa, they will
first show up at this plane.

'The object of study of instructional design may be defined in a much broader sense
(e.g., including aspects that directly concern the development of instructional systems);
however, this minimum description is satisfactory for the present goal.



As a second step, the nature of the mutual contributions must be identified. With
regard to contributions of cognitive science to instructional design, most researchers agree
that studies in cognitive science (and in particular, studies on human cognition and
performance in instructional systems) do not only lead to cognitive theories about human
cognitive processes and performance (which is their primary goal), but also yield
guidelines how to optimize the instructional system under study and may thus contribute
to instructional design. Whereas those contributions will certainly not be questioned, an
important claim of the present article is that the reach of those contributions is limited. In
particular, it will be argued that they are limited to the strategy under study. Guidelines
are only provided on a tactical level (i.e., they affect only one particular instructional
strategy) and whereas they may lead to improvements of the strategy under study, they
will never lead to the development of renewing instructional strategies.

With regard to confributions of instructional design to cognitive science, researchers
show little agreement on the nature, or gven the existence, of such contributions. Research
on instructional design aims at the development of theories that explain the instructional
processes in different instructional systems, and the theories should yield clear guidelines
for the design of those systems. Often, instructional systems will be compared (e.g., in
terms of learning outcomes) that pursue the same instructional goals but--in contrast to
research in cognitive science--apply totally different instructional strategies. In the present
article, it will be argued that such theories on instructional systems may indeed contribute
to cognitive science: In f;articular, renewing instructional strategies may be identified
which reach higher learning outcomes than traditional strategies, and these strategies may
throw a new light on the cognitive processes involved in learning a particular task. For
the field of introductory computer programming, the claims that (a) contributions of
cognitive science to instructional design are limited to particular instructional strategies,
and thac (b) contributions of instructional design to cognitive science exist, at least as far
as new strategies are identified that provide evidence for the importance of particular
cognitive processes, will be further elaborated in the next sections.

2. A Case Study

The case study in teaching introductory computer programming will be presented in such
a way that the differences between the approaches from cognitive science and
instru~tional design are accentuated. The cognitive science approach is characterized by its
emphasis on a description of cognitive processes. According to the presented viewpoint,
research is usually conducted in instructional strategies that are not basically questioned.
For this reason, they will be referred to as silent strategies. It will be argued that the



guidelines for instructional design as offered by cognitive science are limited to those
silent strategies. In contrast, the approach from instructional design is characterized by its
emphasis on a description of instructional processes, including the explication of
instructional strategies which will be referred to as spoken strategies.

2.1. Silent Strategies in Cognitive Science

A well-known example of research in introductory computer programming from a
cognitive science viewpoint is offered by the work of John R. Anderson and his co-
workers at Carnegie Mellon University. By this group, computer programming is seen as
a complex cognitive skill and the process of learning the skill is described by the ACT*
theory of skill acquisition (Anderson, 1982, 1983; Anderson, Farrell & Sauers, 1984).
According to the theory, learning the skill proceeds through three phases.

In the first or declarative stage, the learner receives information about the skill by
formal instruction (e.g., by reading books or listening to lectures). New facts are stored in
declarative memory and to generate behavior on the basis of this newly acquired
knowledge, students must use existing domain-independent procedures (or, productions) to
interpret those facts. Although this interpretive use of knowledge has the advantag» of
flexibility, it also has serious costs in terms of time and errors because of the high
working memory load involved. In *e second phase, a process called knowledge
compilation creates task-specific procedures through practice. Hence, during performance
of the skill (i.e., in a process of "learning by doing") the declarative knowledge is
gradually converted into a fundamentally different, procedural form in which it may
dirsctly control behavior. As a result, the skill is performed faster and with increasingly
less errors because working memory load heavily decreases. In the third and final stage, a
further strengthening of the procedures takes place to make them more selective in their
range of applications.

Research on learning computer programming within this framework may have clear
implications for instruction and instructional design. However, the research is typically
applied in a silent instructional strategy, so that the instructional implications are limited
in their range. For learning computer programming as well as most other problem solving
skills, the silent instructional strategy may be labeled "learning problem solving by solving
problems". According to this strategy, students are alternately offered formal instruction
and practice. For teaching computer programming, the formal instruction usually includes
a small amount of new programming language features along with their syntactical dstails,
and a number of illustrative problems together with their solutions in the form of concrete
Computer programs to illustrate the use of the new material. Practice includes a relatively
large numoer of (conventional) programming problems for which students have to



generate new computer programs. Thus, during formal instruction students are presented
with information that is relevant to the performance of the skill, and during practice
students solve problems that are--apart from their difficulty--essentially identical to the
problems they must le2mn to solve,

From the ACT* theory, guidelines for instruction may be deduced but these guidelines
are, at least theoretically, limited to application within the "learning problem solving by
solving problems" strategy that is silently chosen. Some important guidelines for
instructional design that are offered by the ACT* theory of skill acquisition (Anderson,
1987a, 1987b) pertain to (a) the balance between formal instruction and practice, (b) the
nature of the formal instruction, and (c) the immediacy and form of provided feedback on
student errors during practice. With regard to the first guideline, it should be clear that
one straightforward implication is that in a system in which one can only learn skills by
doing them, the importance of formal instructional diminishes and the importance of
practice increases.

The second guideline is directly related to the first. As a direct consequence of the
balance between formal instruction and practice, there is reason to doubt the value of
elaborate formal--either verbal or textual--instruction. According to the cognitive theory,
one should only provide the information that is required for performing the skill and
which should be based on a production system model of the skill, one should present
small amounts of information at a time in order to prevent processing overload, and one
should focus on telling the students how to solve probiems instead of explaining why
particular solutions work.

A third important guideline concerns the importance of immediate feedback on errors
made during practice. This is a consequence of the interaction between knowledge
compilation and working-memory limitations. Knowledge compilation requires that the
information about a decision is preserved until information about the correctness of the
decision is available; only then, a production can be compiled by attaching the correct
action to the information attached to the decision. Working memory failures will cause the
loss of information and thus impair compilation; obviously, these failures are more likely
to occur if the delay in feedback increases (Anderson, 1987a; Anderson & Jeffries, 1985).

Together, and as argued by Dijkstra (1990), these guidelines for instruction suggest
that skill development and knowledge construction should take place jointly. In the initial
stages of learning, the instruction should not overwhelm learners with a large amount of
information that seems all relevant to later performance of the skill. Instead, the necessary
instruction should be compacted into its bare >ssentials and gradually elaborated during
the skill acquisition process. Furthermore, the instruction should encourage consistent
practice (i.e., solving conventional problems) and provide immediate feedback on errors



during problem solving., This approach to teaching introductory computer programming is
indeed present in the LISP-tutor (Anderson & Reiser, 1985; Anderson & Skwarecki,
1986) and several other ITS’s that are build on the basis of the ACT* theory.

As a first conclusion, it should be obvious that cognitive science may contribute to
instructional « sign; at least, it yields guidelines to improve a particular instructional
strategy ("learning problem solving by solving problems"). But as a second, more
important conclusion, it should be noticed that cognitive science is not able to offer a
renewing instructional strategy because the silent strategy is never questioned, For
instance, it is interesting to notice that ACT* does not provide any guidelines for the
design of practice: Given the silent straiegy, practice is almost by definition "solving the
kind of problems that students must learn to solve". This certainly should not be seen as a
point of critique towards cognitive science. It is exactly what cognitive science is expected
to do because it studies human cognition and performance in familiar task situations, such
as instructional systems. Cognitive theories are primarily developed to explain the
cognitive processes involved in the task situation and as an extra benefit, the theories
might yield guidelines to optimize the particular task situations. The development of
alternative task situations, or, more in particular, new instructional strategies goes beyond
the system of interest.

2.2. Spoken Strategies in Instructional Design

As discusscd in the previous section, part of cognitive science is interested in the
cognition and performance of the human component in instructional systems. Whereas this
research is primarily aimed at the development of cognitive theories, it may also yield
information for instructional theorics as far as the (silent) instructional strategies are
concerned in which the research is conducted. In Contrast, research in instructional design
is primarily aimed at the explication of instructional processes, leading to instructional
theories that organize the information about spoken strategies and related performance of
instructional systems (effectiveness in reaching instructional goals, cost-effectiveness etc.).
The question is now: May this research also contribute to the development of cognitive
theories?

An example of research in introductory compnter programming from an instructional
design viewpoint is offered by my own work at the University of Twente. Computer
programming is seen as a problem solving activity, and the instructional theory that is
under development shou,d explicate the instructional strategies and tactics that make up an
effective instructional system for teaching introductory computer programming. Notice that
this research does nor primarily aim at a study of the learning processes involved in a
silent strategy for teaching programming (such as the work of Anderson), but instead at



an explication of spoken strategies and their effects.

Several instructional strategies have been identified and described (van Merriénboer &
Krammer, 1987, 1990) on the basis of a study of instructional systems in the educational
field. Information was gathered by studying actual courses, textbooks, articles written by
practitioners and teachers, etcetera. The three main groups of instructional strategies
identified were labeled the spiral strategy, the expert strategy and the completion strategy.
Both the spiral and the expert strategy emphasize that students should immediately start
off with designing and/or coding programs, that is, program generation. The spiral
Strategy is the most common approach to teaching introductory comgputer programming,
An important feature of this strategy is its emphasis on incremental learning: Each step
contains both syntactic and semantic elements, presents a minimal extension of previous
(declarative) knowledge, is explained in relation to already acquired knowledge, and is
extensively trained in exercises. The exercises are conventional programming problems
with increasing difficulty during the course. In fact, the spiral strategy may best be seen
as the silent strategy in which most research on computer programming in cognitive
science is conducted.

The expert strategy is heavily inspired by the discipline of structured programming and
it is based on a model of expert behavior. An important feature of this strategy is its
emphasis on both algorithm and program design in a systematic top-down fashion. In
formal instruction, the focus lies on the presentation of a top-down design model that
should enable the learners to concentrate on the semantic content of the algorithm because
less attention is required to plan and execute actions on lower program code levels. With
regard to practice, students receive problems for which algorithms have to be developed
from the outset of the course. Often, intermediate products such as flow-charts, structured
diagrams or pseudo-programming languages are used to represent the algorithms.

Finally, the completion strategy is the only strategy that does not primarily emphasize
the design or coding of new programs. Instead, it emphasizes the reading, extension and
modification of existing, well-designed programs. Students are confronted with non-trivial
design problems from the beginning of the course, but these problems are always
presented in combination with their complete or partial solutions in the form of well-
designed and well-documented (partial) computer programs. The student’ tasks gradually
become more complex during the course, changing from using, reading and tracing
programs, through modifying and completing increasingly larger parts of incomplete
programs, ‘o independently designing and coding new programs or suvprograms.

After their identification and explication, the strategies were evaluated by ~arefully
comparing the quality of their applied instructional processes. This was achieved both by
theoretical studies and experimental research. In theoretical studies (e.g., Van Merriénboer

-~



& Krammer, 1987, 1990), the measure to which known instructional principles or tactics
are well-applied (or can be applied) in the particular strategies was evaluated to formulate
hypotheses about their effectiveness. These instructional principles may be derived both
from existing instructional theories and particular cognitive learning theories such as, for
instance, ACT*. In several studies, the completion strategy was predicted to be superior to
other strategies because it supports most instructional principles that are known from the
literature. Those include the ACT*-principles such as, for instance, the emphasis on
learning by doing (students immediately start completing programs and training the basic
skills involved in programming) and a reduction of processing load (which may be
expected to be lower for completing programs than generating programs). In addition,
several other principles that are known from other cognitive theories and, last but not
least, instructional theories are applied such as, for instance, the availability of useful
worked examples during practice (the incomplete programs may serve as such examples)
and the provocation of mindful abstraction from concrete examples during practice (the
incomplete programs have to be carefully studied before they can be correctly completed).

The predictions concerning the superiority of the completion strategy over other
strategics were supported in several experiments (van Merriénboer, 1988, in press a, in
press b, van Merriénboer & de Croock, 1989). The completion strategy was found to be
more effective than other strategies for a range of learning outcomes, including the
generation of new computer programs. The data indicated that students used parts of the
programs that they had to complete or modify as blue-prints to map their partial solutions
and they generalized from them, by a process which may be called mindful abstraction
(Salomon & Perkins, 1987), to learn new programming principles, design techniques, and
programming language templates. In addition to the automation of skills (as specificized
by tie mechanism of knowledge compilation in ACT¥), the acquisition of schematic,
generalized declarative knowledge proved to be u essential process in learning
elementary computer programming, This has direct implications for cognitive theories, and
in particular theories of skill acquisition that describe the cognitive processes involved in
learning complex cognitive tasks like computer programming. In particular, these theories
seem to be incomplete with regard to the acquisition of structured declarative knowledge
(or schemata); they focus on learning by doing and "rule automation" or knowledge
compilation as the most essential processes in the acquisition of comguter programming
skill, whereas--in more effective instructional strategies--leaming by mindful abstraction
and "schema acquisition" proved to be at least equally important (for an «laborate
discussion, see van Merrignboer & Paas, in press).

Concluding, instructional design may contribute to cognitive science, because the study
of new instructional strategies may provide evidence for the importance of particular



cognitive processes that are neglected or underestimated by theories in cognitive science.
Eventually, this may lead © the revision or extension of those cognitive theories. On the
other hand, the contributions of instructional design are limited. Just as cognitive science
will probably not yield renewing instructional strategies, instructional design will not lead
to the "discovery" nf new cognitive processes or a highly detailed description of those
processes. This is subject to the nature of the field, which main goal is not a to describe
cognitive processes but to prescribe effective instructional strategies. However, the claim
stands that studies in instructional design may provide evidence for the importauce of
particular cognitive processes, and thus lead to the integration of different perspectives in
cognitive science. Such an integration of cognitive viewpoints is necessary to explain
human cognition and performance in newly-developed instructional systems.

3. Discussion

This paper primarily concerned the contributions of instructional design to cognitive
science. It was argued that both sciences have their own object of study. Instrvctional
design studies instructional processes that occur in instructional systems and cognitive
science studies cognitive processes that occur in the human mind, At the tangent plane
between the two sciences, there is however a common interest in instruction-learning
processes. From a case study in introductory computer programming, it was concluded
that both sciences may reciprocally infiuence each other; however, there are limitations to
those contributions. The cognitive processes as described by cognitive science may yield
guidelines to improve instructional systems, but these guidelines are limited to the silent
strategies in which the research has been conducted; the instructional processes as
described by instructional design (i.e., spoken strategies) may provide evidence for the
importance of particular learning processes that are neglected in cognitive theories, but
these implications are also limited because they cannot directly lead to highly detailed
descriptions of those learning processes.

The implications of the presented point-of-view may be illustrated by the developments
in Intelligent Tutoring Systems (ITS; Wenger, 1987). ITS’s may be considered to be on
the tangent plane between cognitive science and instructional design, because they
represent both cognitive processes of experts (expert model) and actual students (student
model), and instructional processes such as instructional strategies and tactics (instructional
model). Whereas cognitive science is primarily interested in expert and student models,
instructional design is (or, should be) primarily interested in instructional models. As
argued in the previous section, ITS's for teaching introductory computer programming
which are build by cognitive scientists will often use a sitent instructional strategy.

10



Indeed, an ITS like the LISP-tutor has an advanced expert model and student model, but
the instructional processes "...have not been directly incorporated into the tutoring system
as explicit tutorial strategies..." (Wenger, 1987, p. 292). In short, there is no explicit
instructional model so that the term silent strategy may be taken literally.

With regard to ITS’s, it is the job of instructional design to build instructional models,
and thus explicate instructional processes. Obiously, the development of explicit
instructional models might also affect other parts of ITS’s. For instance, the completion
strategy may prove to be imporiant to the design of ITS’s for teaching introductory
computer programming. Up to the present, most ITS’s apply a silent strategy, in which
novice students have to write new computer programs. A major problem in those systems
is the generation of informative feedback on semantical program errors, because of the
combinatoric explosion in the tree of possible solutions for a given programming problem.
The completion strategy might offer an effective basis to attack this problem, because the
solution tree is heavily constrained if programs have to be completed instead of newly
generated. Then, the generation of informative feedback on semantical program errors may
be substantially simplified (see, van Merriénboer, van den Berg, & Maaswinkel, 1989).
This leads us to the final conclusion, Cognitive science and instructional design have their
own object of study, but they may reciprocally contribute to each other; furthermore, both
sciences must contribute to each other on the tangent plane between both sciences, such as
the field of ITS’s, to obtain their common goals.

References

Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological Review, 89, 369-406.

Anderson, J. R. (1983). The Architecture of Cognition. Cambridge: The Harvard
University Press.

Anderson, J. R, (1987a). Skill acquisition: Compilation of weak-method problem solutions.
Psychological Review, 94, 192-210.

Anderson, J. R, (1987b). Producti systems, learning. and tutoring, In D. Klahr, P.
Langley, & R. Neches (Eds.), Production System Models of Learning and
Development, Cambridge, MA: The MIT press.

Anderson, J. R, Farrell, R., & Sauers, R. (1984). Learning to program in LISP. Cognitive
Science, 8, 87-129,

Anderson, J. R., & IJeffries, R. (1985). Novice LISP-errors; Undetected losses of
information from working memory. Human-Computer Interaction, 1, 107-131.

Anderson, J. R., & Reiser, B. J, (1985). The LISP-tutor. Byte, 10(4), 159-175.

Anderson, J. R., & Skwarecki, E. (1986). The automated tutoring of introductory

10



computer programming. Communications of the ACM, 29, 842-849.

Dijkstra, S. (1990). The description of knowledge and skills for the purpose o! instruction.
In S. Dijkstra, B. H. M. van Hout-Wolters, & P. C. van der Sijde (Eds.), Research on
Instruction. Englewood Cliffs, NJ: Educational Technology Publications.

Salomon, G., & Perkins, D. N. (1987). Transfer of cognitive skills from programming;
When and How? Journal of Educational Computing Research, 3, 149-169.

Van Merriénboer, J. J. G. (1988). Relationship between cognitive learning style and
achievement in an introductory computer programming course. Journal of Research on
Computing in Education, 21, 181-186.

Van Mermiénboer, J. J. G. {in press a). Strategies for programming instruction in high
school: Program completion vs. program generation, Journal of Educational Computing
Research.

Van Merriénboer, J. J. G. (in press b). Instructional strategies for teaching computer
programming: Interactions with the cognitive style reflection-impulsivity. Journal of
Research on Computing in Education.

Van Merriénboer, J. J. G., van den Berg, K. G., & Maaswinkel, D. M. (1989). Some
experiences with two intelligent tutoring systems for teaching computer programming:
PROUST and the LISP-tutor. In J. M. Pieters (Ed.), Intelligent Tutorial Systems and
Instruction. Enschede: OTG Onderwijsleerprocessen.

Van Merriénboer, J. J. G, & de Croock, M. B. M. (1989, september). Strategies for
computer-based programming instruction: Program completion vs. program generation,
Paper presented on the Third European Conference for Research on Lea:ning and
Instruction (EARLI), Madrid, Spain.

Van Merriénboer, J. J. G., & Krammer, H. P. M. (1987). Instructional stategies and
tactics for the: design of introductory computer programming courses in high school.
Instructional Science, 16, 251-285.

Van Merriénboer, J. J. G., & Krammer, H. P. M. (1990). The ’completion strategy’ in
programming instruction: Theoretical and empirical support. In S. Dijkstra, B. H. M.
van Hout-Wolters, & P. C. van der Sijde (Eds.), Research on Instruction. Englewood
Cliffs, NJ: Educational Technology Publications.

Van Merriénboer, J. J. G.,, & Paas, F. G. W. C. (in press). Automation and schema
acquisition in learning elementary computer programming: Implications for the design
of practice. Compuiers in Human Behavior.

Warries, E. (1987). The knowledge base for instructional design. Instructional Science, 16,
105-108.

Wenger, E. (1987). Artificial Intelligence and Tutoring Systems. Los Altos, CA: Morgan
Kaufmann Publishers.

11



